Research Progress of Homogeneous Catalyst for the Dehydrogenation of Formic Acid
نویسندگان
چکیده
منابع مشابه
A prolific catalyst for dehydrogenation of neat formic acid
Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. ...
متن کاملEfficient dehydrogenation of formic acid using an iron catalyst.
Hydrogen is one of the essential reactants in the chemical industry, though its generation from renewable sources and storage in a safe and reversible manner remain challenging. Formic acid (HCO(2)H or FA) is a promising source and storage material in this respect. Here, we present a highly active iron catalyst system for the liberation of H(2) from FA. Applying 0.005 mole percent of Fe(BF(4))(...
متن کاملHomogeneous Catalyst for Alkane Dehydrogenation
The removal of hydrogen from alkanes to give alkenes is an important commercial objective, as alkenes are widely used as organic feedstocks in industrial processes involving chemical synthesis and polymerisation. This reaction is, however, significantly endothermic, needing up to 30 kcal per mole, and normally occurring at temperatures exceeding 400°C in the presence of heterogeneous supported ...
متن کاملnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst.
Formic acid (FA) is an attractive compound for H2 storage. Currently, the most active catalysts for FA dehydrogenation use precious metals. Here, we report a homogeneous iron catalyst that, when used with a Lewis acid (LA) co-catalyst, gives approximately 1,000,000 turnovers for FA dehydrogenation. To date, this is the highest turnover number reported for a first-row transition metal catalyst. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Organic Chemistry
سال: 2020
ISSN: 0253-2786
DOI: 10.6023/cjoc202003060